On the distributional Jacobian of maps from SN into SN in fractional Sobolev and Hölder spaces

نویسنده

  • Hoai-Minh Nguyen
چکیده

H. Brezis and L. Nirenberg proved that if (gk) ⊂ C(S , S ) and g ∈ C(S , S ) (N ≥ 1) are such that gk → g in BMO(S ), then deg gk → deg g. On the other hand, if g ∈ C(S , S ), then Kronecker’s formula asserts that deg g = 1 |SN | ∫ SN det(∇g) dσ. Consequently, ∫ SN det(∇gk) dσ converges to ∫ SN det(∇g) dσ provided gk → g in BMO(S N ). In the same spirit, we consider the quantity J(g, ψ) := ∫ SN ψ det(∇g) dσ, for all ψ ∈ C(S ,R) and study the convergence of J(gk, ψ). In particular, we prove that J(gk, ψ) converges to J(g, ψ) for any ψ ∈ C(S ,R) if gk converges to g in C(S ) for some α > N−1 N . Surprisingly, this result is “optimal” when N > 1. In the case N = 1 we prove that if gk → g almost everywhere and lim supk→∞ |gk − g|BMO is sufficiently small, then J(gk, ψ) → J(g, ψ) for any ψ ∈ C(S,R). We also establish bounds for J(g, ψ) which are motivated by the works of J. Bourgain, H. Brezis, and H.-M. Nguyen and H.-M. Nguyen. We pay special attention to the case N = 1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decomposition of S1-valued maps in Sobolev spaces

Let n ≥ 2, s > 0, p ≥ 1 be such that 1 ≤ sp < 2. We prove that for each map u ∈W s,p(Sn;S1) one can find φ ∈ W s,p(Sn;R) and v ∈ W sp,1(Sn;S1) such that u = ve. This yields a decomposition of u into a part that has a lifting in W , e, and a map "smoother" than u but without lifting, namely v. Our result generalizes a previous one of Bourgain and Brezis (which corresponds to the case s = 1/2, p ...

متن کامل

Research Summary

1. Overview 2 2. Electromagnetic waves 3 2.1. Approximate cloaking via change of variables 3 2.1.1. Cloaking for the Helmholtz equation 3 2.1.2. Full range estimates for the degree of invisibility 4 2.1.3. Perfect cloaking for the Helmholtz equation 4 2.2. Electrical impedance tomography 5 2.3. Generalized impedance boundary conditions 5 2.3.1. The Helmholtz equation 6 2.3.1. The time harmonic ...

متن کامل

Distributional Jacobian and singularities of Sobolev maps

– We review the definition and main properties of the distributional Jacobians, in particular for Sobolev maps u : R → R with values in the (k − 1)dimensional sphere S.

متن کامل

A new estimate for the topological degree

We establish a new estimate for the topological degree of continuous maps from the sphere SN into itself, which answers a question raised in Bourgain, Brezis, and Mironescu [Commun. Pure Appl. Math. 58 (2005) 529–551] and extends some of the results proved there, as well as in recent work by these authors (Lifting, degree, and distributional Jacobian revisited, http://ann.jussieu.fr/publication...

متن کامل

Weak notions of Jacobian determinant and relaxation

In this paper we study two weak notions of Jacobian determinant for Sobolev maps, namely the distributional Jacobian and the relaxed total variation, which in general could be different. We show some cases of equality and use them to give an explicit expression for the relaxation of some polyconvex functionals.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011